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Time delay in the kinetic terms of reaction-diffusion systems has been investigated. It has been shown that
short delay beyond a critical threshold may induce spatiotemporal instabilities. For unequal diffusivities and
appropriate parameter space delay may induce Turing instability resulting in stationary patterns and also
interesting Turing-Hopf transition with the formation of spirals. The theoretical scheme has been numerically
explored in two different prototypical reaction-diffusion systems.
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I. INTRODUCTION

The use of ordinary partial differential equations in
chemical kinetics is based on the idea that the reaction de-
pends upon the current value of the variables present. A
chemical event, however, may take a small but finite amount
of time to affect a reaction at a later time. For the system
which feels the effect at an appreciable long time later, the
effect of delay cannot be ignored. Such types of systems are
described by delay differential equations �DDEs�. This delay
often realized as feedback is quite pervasive in chemistry and
biology �1,2� and may involve reaction term or diffusion
term in a reaction-diffusion system. The present paper con-
cerns time delay in the reaction terms of two-component
reaction-diffusion systems.

The delay was first employed by Ott et al. �3� to control
systems by manipulating the input signals adjusted to the
current states of the systems. Delayed feedback and its modi-
fications are widely used to control chaos and to stabilize
unstable oscillations or steady states in spatially homoge-
neous systems �4–6�. Global delayed feedback can eliminate
the defects and stabilize regular oscillations in fluids, and
may result in suppression of turbulent states in plasma. Ex-
perimentally delayed feedback was used by Grill et al. �7�,
where the effect of sequence of short light impulses forcing a
meandering spiral wave was investigated. The diameter of
the synchronized trajectory of the spirals was increased as
the delay between the registration of a wave front at the
measuring point and triggering of the stimulus was increased
and finally the synchronization broke down after a particular
threshold value of delay. It has also been observed that elec-
tric field may induce an intrinsic delay in the system since
the intensity of the local electric field depends on the con-
centration of ions at some former time �8�. Delay can modu-
late and induce complex dynamics in many systems includ-
ing chemical reaction �9�, DNA transcription, and optical
systems. Hu et al. �10� showed that both traveling pattern
�spatially periodic and oscillatory in time� and standing pat-
tern �spatially periodic and stationary in time� are observed
in the parametric domain, where undelayed system exhibits
uniform oscillations.

Most of the above-mentioned studies deal with the opera-
tion of delayed feedback on the system in the pattern-
forming region and explore how the existing spatiotemporal
patterns could be modulated, stabilized, or suppressed by the
delay. In earlier studies �11� the effect of time delay had been
investigated in the context of photosensitive chlorine-
dioxide-iodide-malonic acid �CDIMA� system, where the
rate of photochemical reaction is affected by a local delay of
the reaction component. The delayed feedback of the reac-
tant on anharmonic oscillations �12� in the carbon monoxide
oxidation reaction on a platinum single crystal surface has
revealed interesting patterns representing traveling phase
flips, dynamic clustering, and asynchronous oscillations.
Time delay can also control the dynamic behavior of patterns
in other issues �13�. Motivated by these observations our aim
in this paper is to carry out a systematic search for instability
conditions, which can lead to symmetry-breaking structures
due to the time delay in the kinetic terms of a two-
component reaction-diffusion system. Our objective here is
to explore how delay plays a conspicuous role in determining
the stability threshold of the steady state both in absence and
presence of diffusion. Second it is also pertinent to enquire
whether different regions of instability can be modulated by
tuning the delay in kinetics. Our analysis reveals that for
unequal diffusivities delay may induce Turing instability ini-
tiating stationary patterns and transition between Turing to
Hopf instabilities resulting in the formation of spirals. We
corroborate our theoretical analysis by numerical simulations
on two specific reaction-diffusion systems �14–27�.

II. GENERALIZED APPROACH TO DELAY INDUCED
SPATIOTEMPORAL INSTABILITY

To start with we consider a reaction-diffusion system
which describes the dynamics of two field variables u�x ,y , t�
and v�x ,y , t�, a function of space �x ,y� and time �t�. The
delay is incorporated in the kinetic terms f�u ,v� and g�u ,v�
as follows:

�u�x,y,t�
�t

= f„u�x,y,t − ��,v�x,y,t − ��… + d
�2u

�x2 + d
�2u

�y2 ,
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�v�x,y,t�
�t

= g„u�x,y,t − ��,v�x,y,t − ��… +
�2v
�x2 +

�2v
�y2 .

�2.2�

Here d is the ratio of diffusion coefficients of the two spe-
cies: Assuming � to be small we replace u�x ,y , t−��
=u�x ,y , t�−� �u�x,y,t�

�t and v�x ,y , t−��=v�x ,y , t�−� �v�x,y,t�
�t in

Eqs. �2.1� and �2.2� to write as

�u

�t
= f�u�x,y,t� − �

�u

�t
,v�x,y,t� − �

�v
�t
� + d

�2u

�x2 + d
�2u

�y2

�2.3�

and

�v
�t

= g�u�x,y,t� − �
�u

�t
,v�x,y,t� − �

�v
�t
� +

�2v
�x2 +

�2v
�y2 .

�2.4�

Expanding in Taylor series and neglecting the higher-order
nonlinearities, Eqs. �2.3� and �2.4� become

�u

�t
= f�u,v� − �fu�u,v�

�u

�t
− �fv�u,v�

�v
�t

+ d
�2u

�x2 + d
�2u

�y2

�2.5�

and

�v
�t

= g�u,v� − �gu�u,v�
�u

�t
− �gv�u,v�

�v
�t

+
�2v
�x2 +

�2v
�y2 .

�2.6�

The homogenous steady states of the dynamical system are
the fixed points u0 and v0 defined by

f�u0,v0� = 0, g�u0,v0� = 0. �2.7�

We now consider small spatiotemporal perturbations
�u�x ,y , t� and �v�x ,y , t� on a homogenous steady state
�u0 ,v0� so that we have

u�x,y,t� = u0 + �u�x,y,t�,v�x,y,t� = v0 + �v�x,y,t� .

�2.8�

By expanding the reaction terms around this steady state in a
Taylor series up to first order we obtain

��u

�t
+ �fu

��u

�t
+ �fv

��v
�t

= fu�u + fv�v + d
�2�u

�x2 + d
�2�u

�y2

�2.9�

and

��v
�t

+ �gu
��u

�t
+ �gv

��v
�t

= gu�u + gv�v +
�2�v
�x2 +

�2�v
�y2 .

�2.10�

Expressing spatiotemporal perturbation �u�x ,y , t� and
�v�x ,y , t� in the form

�u�x,y,t� = �u0e�t cos kxx cos kyy , �2.11�

�v�x,y,t� = �v0e�t cos kxx cos kyy , �2.12�

and upon inserting them in Eqs. �2.9� and �2.10�, we obtain
the following matrix equation for eigenvalues:

���1 + �fu� − fu + dk2 ��� − 1�fv

��� − 1�gu ��1 + �gv� − gv + k2 ���u0

�v0
� = 0.

�2.13�

Neglecting higher-order nonlinearities of O��2� we get the
following quadratic equation for the eigenvalues of the asso-
ciated stability matrix:

�2 − �
��fu + gv� + 2��fugv − gufv�� − k2��1 + d� + ��fu + dgv��

�1 + �fu + gv���

+
dk4 − k2�fu + dgv� + fugv − gufv

�1 + �fu + gv���
= 0, �2.14�

where k2=kx
2+ky

2. Our aim here is to find out the threshold or
critical value of the delay time for which the delayed system
which is otherwise stable with respect to homogeneous per-
turbation becomes unstable. For the homogeneous perturba-
tion we have

�2 − �
��fu + gv� + 2��fugv − gufv��

�1 + �fu + gv���
+

fugv − gufv

�1 + �fu + gv���
= 0,

�2.15�

Eq. �2.15� may be written as

�2 − A� + B = 0, �2.16�

where A=
��fu+gv�+2��fugv−gufv��

�1+�fu+gv��� and B=
fugv−gufv

�1+�fu+gv��� .
The condition for stability of the homogeneous steady

state for the system with delay is A�0 and B�0. B is posi-
tive if 1+ �fu+gv���0. Now the condition A�0 can be ob-
tained when ��fu+gv�+2��fugv−gufv���0 and �1+ �fu
+gv����0. This allows the range of values for � determined
by the following condition:

−
1

fu + gv
� � � −

fu + gv

2�fugv − gufv�
. �2.17�

We now introduce diffusion and enquire whether it gives
rise to the situation of special interest in destabilizing
of the homogeneous steady state of the system with
delay when the ratio of the diffusion coefficients is
unity �d=1�. Putting d=1 in Eq. �2.14� and writing C

=
��fu+gv�+2��fugv−gufv��−k2�2+��fu+gv��

�1+�fu+gv��� and D=
k4−k2�fu+gv�+fugv−gufv

�1+�fu+gv��� we
obtain

�2 − C� + D = 0. �2.18�

We now recall that the condition of stability of the homoge-
neous steady state �fu+gv�0 and fugv−gufv�0� asserts that
D is always positive. Since the numerator of D determines
the Turing line which is found to be independent of �, any
delay-induced instability in presence of diffusion must de-
pend on C. Hence the condition of instability is C�0. More-
over since the denominator of C is always positive the con-
dition of instability reduces to the following:
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��fu + gv� + 2��fugv − gufv�� − k2�2 + ��fu + gv�� � 0.

�2.19�

This implies that the lower bound of � must satisfy

� �
2k2 − �fu + gv�

2�fugv − gufv� − k2�fu + gv�
= �c. �2.20�

The critical delay �c thus sets a condition of instability of the
homogeneous steady state of the system. This is true even if
the ratio of the diffusion coefficients is unity. However, in
what follows from the detailed numerical simulations of the
partial differential equations carried out in the next section,
this instability does not give rise to any symmetry-breaking
spatial structures.

When the diffusivities of the activator and the inhibitors
are not equal �d�1� then since D is always positive the
necessary and sufficient condition for delay-induced instabil-
ity is given by

� �
�1 + d�k2 − �fu + gv�

2�fugv − gufv� − k2�fu + gv�
= �c. �2.21�

The conclusion is that the delay beyond a threshold may
induce spatiotemporal instability in the two-component
activator-inhibitor system when the undelayed system re-
mains homogeneously stable. It also follows that the bifur-
cation lines can be manipulated by suitable application of
short time delay in the kinetic terms to modulate the different
regions of instability and induce transitions between them.
We illustrate the theory with the help of the following two
examples.

III. APPLICATIONS

A. Pigmentation fish model

As an example we first consider a two-variable reaction-
diffusion system proposed by Barrio et al. �15� as an alter-
native approach to mechanochemical models, where pattern
arises due to physical interaction between cells with external
surrounding leading to cell aggregation and differentiation.
The equations are given by

�u

�t
= �u�1 − r1v

2� + v�1 − r2u� + �d
�2u

�x2 , �3.1�

�v
�t

= �v�1 + r1uv/�� + u�	 + r2v� + �
�2v
�x2 , �3.2�

where � ,� ,	 ,r1 ,r2 are given parameters of the dynamics. �
is the length scale. The motivation behind the choice of the
reaction terms is the requirement of conservation of certain
chemical species and nonlinearity, which determines the spe-
cific unstable modes to dominate for the selection of a typi-
cal pattern when Turing instability sets in. Since in the ab-
sence of diffusion the system admits one more solution at
v=− ��+	�u

1+� , which follows simply from homogeneous steady
state condition on Eqs. �3.1� and �3.2�, the state �0,0� can be
ensured as the only uniform steady state by setting the pa-
rameter �=−	. The complex patterns generated with this

model under various conditions bear striking resemblance
with pigmentation patterns observed in a number of fish spe-
cies. For further details and other related work we refer to
Refs �13–16,28�.

The dynamical evolution of concentration of variables at a
time depends on those at earlier time. We set the parameter
values as �=0.899, �=−0.91, 	=−0.899, �=2.0, r1=0.02,
and r2=0.2 and depending on the ratio of the diffusivities
two distinct situations �d=1 and d�1� emerge. We first ex-
plore the instability threshold for d�1 by plotting in Fig. 1
the dispersion relation, Re � vs k2 for several values of delay
�. It is observed that for very small values of delay the sys-
tem remains homogeneous. The critical delay which can be
calculated theoretically from Eq. �2.21� for the given set of
parameter values and d=0.536 is found to be 0.37 �corre-
sponding to a system size and number of nodes as illustrated
in Fig. 2�b� subsequently in this section�.

To realize the spatiotemporal instability and resulting pat-
terns we have carried out numerical simulations of Eqs. �3.1�
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τ=0.05
τ=0.1
τ=0.3

λ

k2

FIG. 1. Dispersion relation: Plot of � vs k2 for the parameter set
�=0.899, �=−0.91, 	=−0.899, �=2.0, r1=0.02, and r2=2.0 for
different diffusivities of the two components �d=0.536�.

a

b

c

d

FIG. 2. Numerical simulations �in two-dimensional space� of
delay-induced instability in pigmentation fish model for the param-
eters �=0.899, �=−0.91, 	=−0.899, �=2.0, r1=0.02, and r2=0.2
�grid size 100
100 with �x=�y=1.0, �t=0.01� �a� d=0.536, �
=0.0 �homogeneous state�, �b� d=0.536, �=0.4 �delay-induced pat-
tern�, �c� d=0.516, �=0.0 �Turing region�, and �d� d=0.516, �
=0.4 �delay in Turing region�.
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and �3.2� in two dimensions using explicit Euler method. The
computations have been performed on 100
100 array with
grid spacing �x=�y=1.0 and a time step �t=0.01 and zero
flux boundary condition. The development of a typical time-
delay-induced pattern in the form of spots for d=0.536 is
shown in Figs. 2�a� and 2�b� for �=0 and �=0.4, respec-
tively. In order to compare the theoretically calculated criti-
cal threshold for delay with the numerical one it is worth-
while to look into the behavior of an order parameter as a
function of delay. The definition of this quantity ��� is �
= �	u2
− 	u
2� /N2 �N is the number of sites in the grid�. This
order parameter has been used earlier in the context of pat-
tern formation �28�. In Fig. 3 we display the numerically
calculated variance for the aforesaid parameter values as a
function of delay strength � for d=0.536. The simulations are
performed from a homogeneous state of the system to an
inhomogeneous state of pattern, each state being considered
after the system reaches its stationarity. It is therefore easy to
locate the nonequilibrium transition point corresponding to
an approximate critical value of delay strength of �c=0.3. We
observe a fair correspondence between theoretical and nu-
merical values.

Next we consider the effect of delay in the Turing region.
Figure 2�c� illustrates the typical Turing pattern in the form
of spots for d=0.516 when �=0. It is apparent that with a
delay �=0.4 the number of spots in the given two-
dimensional domain increases, signifying an increase in the
number of nodes in both directions �Fig. 2�d��. This implies
that delay may modify the length scale of the spatiotemporal
dynamics in the Turing region. Lastly, we mention in passing
that when the diffusivities are equal we do not observe any
”bonafide” instability that entails a spatial structure, which
can be quantitatively characterized by definite wavelength
appropriate to system length scale.

B. Chlorine-dioxide-iodide-malonic acid system

The development of CDIMA system not only pioneered
the experimental study in this field but also inspired exten-
sive analytical and numerical studies that provided enormous
insight into the subject �22–26�. The chemical reactions that
involve five species malonic acid �MA�, I2, ClO2, I−, and
ClO2

− in the model are the following:

MA + I2 → IMA + I− + H+,

ClO2 + I− → ClO2
− +

1

2
I2,

ClO2
− + 4I− + 4H+ → Cl− + 2I2 + 2H2O.

The above-mentioned five-variable model was reduced by
Lengyel and Epstein to a two-component system with the
help of an experimentally realizable assumption that the con-
centrations of malonic acid, chlorine dioxide, and iodine re-
main practically constant. u and v can be identified as the
dimensionless concentrations of activator �I−� and inhibitor
�ClO2

−�, respectively, for the reaction-diffusion system so that
the equations become

�u

�t
= a − u −

4uv
1 + u2 +

�2u

�x2 +
�2u

�y2 , �3.3�

�v
�t

= �b�u −
uv

1 + u2� + d� �2v
�x2 +

�2v
�y2� . �3.4�

Here a, b, and  are dimensionless parameters containing
kinetic parameters and initial concentrations of the reactants
with =1+s0

k1

k2
. s0 corresponds to the initial concentration of

starch undergoing a complexation reaction with iodide to
form starch iodide complex �I−+S�complex�. k1 and k2 are
the forward and backward rate constants of the complexation
equilibrium. The ratio of the diffusion coefficients d �d
=DClO2

− /DI−� of the activator and the inhibitor in absence of
starch is related to the effective ratio of the diffusion coeffi-
cients � for the dynamics as �=d. We fix the experimen-
tally admissible parameter values as mentioned in Refs.
�19–21�. The parameter  is controlled by the concentration
of starch.

It is well known from the linear stability analysis of the
undelayed ��=0� system that by varying the complexing
agent ��, one can adjust the Hopf line in the b-a parameter
plane in such a way that it lies below Turing bifurcation line,
which is independent of  �Fig. 4�. Introduction of delay �
gives us a useful handle for further manipulation of the in-
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FIG. 3. Plot of variance vs delay strength for the parameter set
�=0.899, �=−0.91, 	=−0.899, �=2.0, r1=0.02, and r2=2.0 for
different diffusivities of the two components �d=0.536�.
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FIG. 4. Bifurcation diagram for CDIMA system exhibiting
delay-induced Turing-Hopf transition for d=1.6, =8.0. Dashed
line represents Turing line; solid line represents Hopf line.
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stability region between Hopf and Turing lines, since it can
be easily shown that the Hopf bifurcation line for the system
with delay ���0� is given by

b =
3a2 − 125

5a�1 − 10��
, �3.5�

whereas the Turing line remains unaffected by the delay
which may be written as

�3da2 − 5ab − 125d�2 = 100abd�a2 + 125� . �3.6�

Hopf line can be suitably adjusted in the a-b plane by the
appropriate choice of delay so that it crosses the Turing line.
By increasing the delay the width of the Hopf region can be
widened. This is shown in Fig. 4. It is thus apparent that by
tuning the delay the Hopf bifurcation line can be switched
over to the Turing line, resulting in a condition for limit
cycle oscillations. Furthermore when diffusion comes into
play in such a system where the reaction kinetics alone ex-
hibits periodic limit cycle behavior via a Hopf bifurcation,
one may envisage periodic wave train solutions. Such sys-
tems have characteristic properties similar to well-known �
−� systems in the vicinity of Hopf bifurcation, which gives
rise to spirals �29–31�. We therefore expect that the delay
may induce spirals via a Turing-Hopf transition.

In view of the aforesaid analysis we carry out numerical
simulations using Eqs. �3.3� and �3.4� by the explicit Euler
method as described earlier in search of Turing-Hopf transi-
tion induced by time delay. The results are illustrated in Fig.
5. The simulations are started with spatially random pertur-
bations of �1% around the steady state u0=a /5, v0=1+u0

2

and for =4, which is a Hopf region. The system without
delay remains homogeneous in this parameter regime. Appli-
cation of delay beyond a critical threshold exhibits a spiral
�Fig. 5�b�� pattern. When  is raised to a higher value the

system returns to usual Turing region �=8.0, Fig. 5�c�� for
d=1.6 and beyond a critical delay strength the spots get de-
formed and produce a regular spiral �Fig. 5�d��. This clearly
demonstrates a Turing-Hopf transition induced by delay.
Once the spiral is generated in the Turing region as a result
of Turing-Hopf transition, a systematic small increase in the
delay leads to its breakup along with the formation of small
deformed spirals. This is shown in Figs. 6�a�–6�c�. Again for
equal diffusivities we do not observe any regular structures
as in the earlier cases.

IV. CONCLUSION

In summary, we have formulated a generalized approach
to time delay-induced instabilities of the homogeneous
steady state of the two-component reaction-diffusion sys-
tems. It has been shown that the instabilities can be realized
when the diffusivities of the two components are different.
An interesting offshoot of the theoretical scheme is a critical
delay which determines the threshold of instability. We have
demonstrated that delay in kinetics can be instrumental in
inducing Turing instability as well as Turing-Hopf transition
when the diffusion ratio differs from unity. This may result in
the formation of symmetry-breaking structures in the form of
Turing patterns or spirals. The delay in reaction kinetic terms
may thus be tuned to manipulate the bifurcation lines and the
associated stability regions between them. Since time delay
appears as an important component of the dynamical systems
in several areas of biology, we believe that our observation
of delay-induced instability is likely to be important in sev-
eral far-from-equilibrium phenomena.
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a
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FIG. 5. Numerically simulated �in two-dimensional space�
delay-induced spatial instability in CDIMA system for the param-
eters a=18.0, b=1.5, �grid size 100
100 with �x=�y=1.0 and
�t=0.005� �a� =4.0, d=0.25, �=0.0 �Hopf region�, �b� =4.0, d
=0.25, �=0.2 �delay in Hopf region�, �c� =8.0, d=1.6, �=0.0
�Turing region�, and �d� =8.0, d=1.6, �=0.2 �delay in Turing
region�.

a b

c

FIG. 6. Numerically simulated �in two-dimensional space�
delay-induced deformation of spirals in CDIMA system for the pa-
rameters a=18.0, b=1.5, =8, d=1.6 �grid size 100
100 with
�x=�y=1.0 and �t=0.005� �a� �=0.2, �b� �=0.21, and �c� �
=0.225.
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